Pages
HomeRecent Projects
The rules are simple. The results are implicative of the emergent behavior resulting from an elementary ruleset. This algorithm, who is analagous to life itself, dictates the following action for each cell in the 256 body grid of my 16x16 display:
These simple rules display mesmerizing patterns from random initial conditions with one thing in common between generations – the inevitable reset of the board to start again.
You can see the game in action at this YouTube Video.
Extending the same Animation class that I’ve used for all of my matrix implementations, the GameOfLife
class takes care of calculating the board state for every generation, as well as detecting boards that die out completely or get stuck in periodic patterns. Each board state is calculated in the void generate()
function. The board is iterated with a nested for
loop and each cell and a count of its neighbors is tallied and stored for the remainder of the loop cycle. Then, each of the four game conditions are checked against the count and the resulting state for that cell is logged in another matrix.
For each instance of a cell changing state, the LifeDeltas variable is increased. For example, if there were one cell left on the board, in the next state they would die and LifeDeltas would be set to 1. If the number of toggles becomes periodic over DELTA_GENS
samples (8), the game is deemed to be in an infinite loop and the board is reset to new random initial conditions.
The full code is given below:
#pragma once
#define DELTA_GENS 8
class GameOfLife : public Animation
{
public:
using Animation::Animation;
int board[MATRIX_WIDTH][MATRIX_HEIGHT] = {};
int lifeCount = 0; // Number of cells alive on the board
int lifeDeltas[DELTA_GENS] = {0}; // A rolling count of the DELTA_GENS most recent deltas.
int generations = 0; // Number of generations a board survived
void reset() {
wipeAnimation();
generations = 0;
for(int x = 0; x < MATRIX_WIDTH; x++) {
for(int y = 0; y < MATRIX_HEIGHT; y++) {
board[x][y] = bool(random(2));
}
}
for(int i = 0; i < DELTA_GENS; i++){
lifeDeltas[i] = 0;
}
renderBoard();
// fade in at new game
for(uint8_t b=5; b <= Config.brightness; b++) {
FastLED.setBrightness(b);
FastLED.show();
delay(10);
}
delay(750); //show the initial conditions for longer duration.
}
void loop() {
generate();
renderBoard();
generations++;
if((lifeCount == 0 || lifeDeltaPass()) && generations > 1 || generations > 500){
delay(1200);
reset();
}
FastLED.setBrightness(Config.brightness);
delay(100);
}
// The game of life:
// Overpopulation: 4 or more cells around us are alive.
// Lonliness: 1 or fewer live neighbors.
// Birth: Exactly 3 live neighbors.
// Stasis: All other cases, state remains the same.
void generate() {
int next[MATRIX_HEIGHT][MATRIX_WIDTH] = {0};
int lifeDelta = 0;
for(int x = 1; x < MATRIX_WIDTH-1; x++) {
for(int y = 1; y < MATRIX_HEIGHT-1; y++) {
int neighbors = 0;
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
neighbors += board[x+i][y+j];
}
}
//subtract self (included above)
neighbors -= board[x][y];
//GOL Rules:
if(board[x][y] == 1 && neighbors >= 4) {
next[x][y] = 0;
lifeDelta++;
}
else if(board[x][y] == 1 && neighbors <= 1) {
next[x][y] = 0;
lifeDelta++;
}
else if(board[x][y] == 0 && neighbors == 3) {
next[x][y] = 1;
lifeDelta++;
}
else {
next[x][y] = board[x][y];
}
}
}
addDelta(lifeDelta);
lifeCount = 0;
for(int x = 0; x < MATRIX_WIDTH; x++) {
for(int y = 0; y < MATRIX_HEIGHT; y++) {
board[x][y] = next[x][y];
if(next[x][y] == 1)
lifeCount++;
}
}
}
void addDelta(int del) {
for (int i = DELTA_GENS-1; i > 0; i--) {
lifeDeltas[i] = lifeDeltas[i-1];
}
lifeDeltas[0] = del;
}
bool lifeDeltaPass() const {
int first = lifeDeltas[0];
//check all deltas, if there are any unequal to the first, return the 1.
//otherwise, we know they are all the same. return 0:
//-->no movement has occurred in DELTA_GENS generations
for (int i = 0; i < DELTA_GENS; i++) {
if(lifeDeltas[i] != first)
return false;
}
return true;
}
// ------------------------------------------------
// ANIMATION HELPERS --- NOT CRUCIAL FOR GAME LOGIC
// ------------------------------------------------
void renderBoard() const {
for (int x = 0; x < MATRIX_WIDTH; x++) {
for (int y = 0; y < MATRIX_HEIGHT; y++) {
leds[topoXY(x, y)] = board[x][y] == 1 ? CRGB(255, 255, 255) : CRGB(0, 0, 0);
}
}
FastLED.show();
}
// horizontal wipe
void wipeAnimation() {
for(int i = 0; i < MATRIX_WIDTH/2; i++) {
for(int j = 0; j < MATRIX_HEIGHT; j++) {
board[i][j] = 1;
board[MATRIX_WIDTH-1-i][j] = 1;
}
renderBoard();
delay(60);
}
delay(100);
for(int i = 0; i < 25; i++) {
fadeToBlackBy(leds, NUM_LEDS, 25);
FastLED.show();
delay(15);
}
betterClear();
delay(750);
}
void resetBoard() {
for(int x = 0; x < MATRIX_WIDTH; x++) {
for(int y = 0; y < MATRIX_HEIGHT; y++) {
board[x][y] = 0;
}
}
}
};